408_skript_vektorgeometrie_grundlagen.pdf 409_skript_vektorgeometrie_geraden_und_ebenen.pdf 410_skript_vektorgeometrie_skp_normalformen.pdf 411_Skript_Vektorgeometrie _vektorprodukt.pdf

1. Grundlagen der Vektorgeometrie (Vector Geometry Basics)

Vector geometry provides tools to describe and analyze geometric objects like points, lines, and planes using vectors.

1.1. Skalare vs. Vektorielle Größen (Scalars vs. Vectors)

  • Skalar (Scalar): A quantity defined by a magnitude (number) and possibly a unit (e.g., temperature, distance, speed/tempo) 111111111.

  • Vektoriell (Vectorial): A quantity defined by magnitude and direction (e.g., velocity, force, displacement) 2222. Represented visually by arrows3.

1.2. Vektoren: Definition und Darstellung (Vectors: Definition and Representation)

  • Definition: A vector is the set of all arrows (directed line segments) having the same length and direction4. Any single arrow is a representative (Repräsentant)5. Vectors can be shifted parallelly without changing6.

  • Räume (Spaces): We focus on the plane  and space 7. Points are represented by coordinate tuples  or 8.

  • Notation:

    • Name: 9.

    • From points:  (from point P to point Q)10.

    • Coordinates (column vector):  representing the displacement in each coordinate direction11111111. The parentheses indicate the third component is optional (for  vs )12.

1.3. Spezielle Vektoren und Operationen (Special Vectors and Operations)

  • Nullvektor (Zero Vector): . Represents no displacement 13. 14.

  • Gegenvektor (Opposite Vector): . Same length, opposite direction 15.

  • Skalarmultiplikation (Scalar Multiplication): . Stretches () or shrinks () the vector; reverses direction if  16161616.

  • Vektoraddition (Vector Addition): Geometrically corresponds to placing arrows head-to-tail (parallelogram rule)17171717. Coordinates are added component-wise 18:

  • Vektorsubtraktion (Vector Subtraction): Add the opposite vector: 19:

1.4. Norm (Länge) eines Vektors (Norm/Length of a Vector)

  • Definition: The norm or length is calculated using the Pythagorean theorem 20202020:

  • Properties:

    • 21.

    •  22.

    •  23.

1.5. Ortsvektoren (Position Vectors)

  • Definition: The position vector (Ortsvektor) of a point is the vector from the origin to 24. Its coordinates are the same as the point’s coordinates 25:

  • Connecting Vector: The vector from point to point is found by subtracting position vectors 26262626:

  • Mittelpunkt (Midpoint): The position vector of the midpoint of segment is the average of the endpoint position vectors 27272727:

  • Schwerpunkt (Centroid): The position vector of the centroid of a triangle is the average of the vertex position vectors 28:


2. Geraden und Ebenen (Lines and Planes)

2.1. Geraden (Lines)

Parametergleichung (Vector/Parametric Equation)

  • Describes a line  passing through point  in the direction of vector  29.

  • Form: For any point on the line, its position vector is given by 30:

    •  is the stützvektor (position vector of a point on the line).

    •  is the richtungsvektor (direction vector).

    •  is the parameter. Varying  traces out all points on the line 31313131.

  • This form works in  and 32323232.

Koordinatengleichung (Coordinate Equation) - Nur in 

  • Forms:

    • Linear function:  (for non-vertical lines) 33.

    • General form:  (works for all lines, including vertical) 34.

  • There’s no direct equivalent simple coordinate equation for a line in 35.

Umwandlungen (Conversions) - in 

  • Coordinate to Vector: Find two points  satisfying . Use them to form  and  36.

  • Vector to Coordinate:

    1. Find the slope  from the direction vector  as  (if ) 37.

    2. Use the point  from  in  to find the y-intercept  38.

    3. Rewrite in the form  39.

Lagebeziehungen und spezielle Punkte (Relative Positions and Special Points)

  • Punkt auf Gerade (Point on Line): A point  lies on  if there exists a single  such that  40. This leads to a system of equations (one for each coordinate) which must have a consistent solution for  41.

  • Parallele Geraden (Parallel Lines): Two lines  and  are parallel if their direction vectors are scalar multiples of each other:  for some  42.

  • Schnittpunkt (Intersection Point): Find  such that  43. This is a system of linear equations for  and 44.

    • In : Unique solution if not parallel. No solution if parallel and distinct. Infinite solutions if identical.

    • In : Unique solution if they intersect. No solution if parallel and distinct OR windschief (skew) (non-parallel, non-intersecting) 45454545. Infinite solutions if identical.

  • Spurpunkte (Trace Points) in : Intersection points with the coordinate planes (-plane where -plane where -plane where ) 46. Find the parameter  by setting the corresponding coordinate in the vector equation to zero 47.

2.2. Ebenen (Planes) - Nur in 

Parametergleichung (Vector/Parametric Equation)

  • Describes a plane  passing through point  and spanned by two non-collinear direction vectors  and 48484848.

  • Any vector  in the plane can be written as a unique linear combination  49.

  • Form: For any point on the plane, its position vector is given by 50:

    •  is the stützvektor.

    •  are the richtungsvektoren (direction/spanning vectors).

    •  are the parameters.

Koordinatengleichung (Coordinate Equation)

  • Form: A single linear equation represents a plane in 51515151:

  • Special Cases:

    • If , the plane contains the origin52.

    • If e.g. , the plane is parallel to the -axis (or contains it if ) 53.

    • If e.g.  (and ), the plane is  or , parallel to the -plane.

Umwandlungen (Conversions)

  • Coordinate to Vector: Find three non-collinear points  satisfying the coordinate equation. Use them to form 54.

  • Vector to Coordinate: Eliminate the parameters  from the system of three component equations 55555555.

Lagebeziehungen und spezielle Punkte (Relative Positions and Special Points)

  • Punkt auf Ebene (Point on Plane):

    • Coordinate Eq.: Check if the point’s coordinates satisfy the equation56.

    • Vector Eq.: Check if there exist  such that  57.

  • Spurpunkte (Trace Points): Intersection points with the coordinate axes58. Find by setting two coordinates to zero in the coordinate equation 59. E.g., for  on the -axis, set  and solve for .

    • Achsenabschnittsform (Intercept Form): If intercepts are , the equation is  60.
  • Schnitt Gerade-Ebene (Line-Plane Intersection): Substitute the line’s parametric component equations (, etc.) into the plane’s coordinate equation and solve for the line parameter  61. Substitute back into the line equation to get the point62. (Alternatively, equate vector forms and solve the  system for  63).

    • Possible outcomes: Unique intersection point, line lies within the plane (infinite solutions), line is parallel to the plane (no solution).
  • Schnitt Ebene-Ebene (Plane-Plane Intersection): Solve the system of two coordinate equations 64.

    • If planes are not parallel, the solution set is a line (the Schnittgerade). Find two points that satisfy both equations (e.g., by setting  and solving for , then setting  and solving again) to define the line 65656565.

    • If planes are parallel and distinct, no solution.

    • If planes are identical, infinite solutions (the plane itself).


3. Das Skalarprodukt (Scalar Product / Dot Product)

A way to “multiply” two vectors resulting in a scalar.

3.1. Definitionen

  1. Geometrisch: Based on the angle between the vectors () 666666666666666666:

    • If either vector is , the dot product is 067676767.
  2. Algebraisch: Based on components 68686868:

3.2. Eigenschaften und Gesetze (Properties and Laws)

  • The result is a scalar (a number), not a vector69.

  • Kommutativgesetz (Commutative):  70.

  • Distributivgesetz (Distributive):  71.

  • Scalar Multiplication:  72.

  • Relation to Norm: 73.

3.3. Geometrische Bedeutung und Anwendungen

  • Vorzeichen (Sign):

    •  is acute ()74.

    •  is obtuse ()75.

    •  (orthogonal) or one vector is  76.

  • Orthogonalitätstest (Orthogonality Test): Non-zero vectors  and  are perpendicular if and only if  77777777.

  • Winkelberechnung (Angle Calculation): The angle between non-zero vectors and is given by 787878787878787878:

  • Projektion (Projection): The vector projection of onto the direction of is 79:

    The scalar projection (length of with sign) is .

  • Arbeit (Work): Physical work  done by a force  over a displacement  is  (if force is constant)808080808080808080.


4. Normalenvektoren und Hesse-Normalform (Normal Vectors and Hesse Normal Form)

4.1. Normalenvektor (Normal Vector)

  • Definition: A vector  that is perpendicular (orthogonal) to a given line (in ) or plane (in ) 81. It is not unique; any scalar multiple  () is also a normal vector82.

  • From Coordinate Equation:

    • For a line  in  is a normal vector 83838383.

    • For a plane  in  is a normal vector 84848484.

  • Verification: Show that  for any two points  on the line/plane 85858585.

4.2. Anwendungen von Normalenvektoren

  • Finding orthogonal line/plane: The normal vector of the given object becomes the direction vector of the orthogonal object 86.

  • Reflections: To reflect a point  across a plane , find the line through  normal to . Find the intersection  of the line and plane. The reflection  satisfies  87.

  • Angle between Planes: The angle between two planes  and  is equal to the angle (or its supplement ) between their normal vectors  and  88. Calculate using the dot product formula for .

4.3. Abstand Punkt-Ebene / Punkt-Gerade (Distance Point-Plane / Point-Line)

  • The distance  from a point  to a plane  is the length of the projection of  onto the normal vector , where  is any point on the plane 89898989.

  • Formula (): 90

  • Formula (): For distance from to line 91:

  • Interpretation of Sign: The sign of the expression inside the absolute value indicates on which side of the plane/line the point  lies, relative to the direction of the normal vector  92929292.

4.4. Hesse-Normalform (Hesse Normal Form - HNF)

  • A normalized version of the coordinate equation, obtained by dividing by the norm of the normal vector, 93.

  • Form (Plane): 94

  • Form (Line): 95

  • Advantage: Plugging a point ‘s coordinates into the left side of the HNF directly gives the signed distance from the point to the plane/line96. The absolute value is the geometric distance . The constant term in the HNF gives the signed distance from the origin97.


5. Das Vektorprodukt (Vector Product / Cross Product)

A way to multiply two vectors in  resulting in another vector in . Does not exist in .

5.1. Motivation

  • Physics: Lorentz force  acts perpendicular to both velocity  and magnetic field  98989898.

  • Geometry: Need an operation to find a vector orthogonal to two given vectors (e.g., normal to a plane) 99.

5.2. Geometrische Definition (Geometric Definition)

The vector product  is uniquely defined by three properties 100:

  1. Orthogonalität (Orthogonality):  is perpendicular to both  and  (and thus perpendicular to the plane they span).

  2. Betrag/Norm (Magnitude/Norm): , where  is the angle between  and . This magnitude equals the area of the parallelogram spanned by  and  101101101101.

  3. Orientierung (Orientation): The triplet  forms a right-handed system(Rechtssystem), following the right-hand rule 102.

  • Special Case: If  and  are collinear (parallel or anti-parallel,  or ), then 103.

5.3. Algebraische Berechnung (Algebraic Calculation)

  • The coordinates of are given by104104104104104104104104104:

  • This formula ensures all three geometric properties are met 105105105105.

  • Mnemonic using Determinants: The components can be remembered as determinants 106:

    (Note the cyclic permutation of indices 1, 2, 3 in the rows).

5.4. Eigenschaften (Properties)

  • Nicht-kommutativ (Anti-commutative):  107.

  • Nicht-assoziativ (Not associative):  generally 108.

  • Distributive: .

  • Scalar Multiplication: .

5.5. Geometrische Anwendungen (Geometric Applications)

  • Normalenvektor einer Ebene (Plane Normal Vector): Given three non-collinear points , the vector  is normal to the plane containing them 109. This allows easy derivation of the plane’s coordinate equation  110.

  • Flächeninhalt (Area):

    • Area of parallelogram spanned by 111111111111.

    • Area of triangle  112112112112.

  • Abstand Punkt-Gerade in (Distance Point-Line in ): The distance from a point to a line (given by point and direction ) is the height of the parallelogram spanned by and 113113113113.

    114